Rumus trigonometri dua sudut:
-------------------------
sin (a+b) = sin a cos b + cos a sin b
sin (a-b) = sin a cos b - cos a sin b
cos (a+b) = cos a cos b - sin a sin b
cos (a-b) = cos a cos b + sin a sin b
sin(a+b)= sin a cos b + cos a sin b cos(a+b)= cos a cos b - sin a sin b
sin(a-b)= sin a cos b - cos a sin b cos(a-b)= cos a cos b + sin a sin b
------------------------------------ + ------------------------------------ +
sin(a+b) + sin(a-b)= 2 sin a cos b cos(a+b) + cos(a-b)= 2 cos a cos b
sin a + sin b= 2 sin 1/2(a+b) cos 1/2(a-b) cos a + cos b= 2 cos 1/2(a+b) cos 1/2(a-b)
sin(a+b)= sin a cos b + cos a sin b cos(a+b)= cos a cos b - sin a sin b
sin(a-b)= sin a cos b - cos a sin b cos(a-b)= cos a cos b + sin a sin b
------------------------------------ _ ------------------------------------ _
sin (a+b) - sin (a-b)= 2 cos a sin b cos(a+b) - cos (a-b)= -2 sin a sin b
sin a - sin b= 2 cos 1/2(a+b) sin 1/2(a-b) cos(a-b) - cos (a+b)= 2 sin a sin b
cos a - cos b= -2 sin 1/2(a+b) sin 1/2(a-b) cos b - cos a= 2 sin 1/2(a+b) sin 1/2(a-b)
Identitas Trigonometri:
----------------------
sin^2 x + cos^2 x = 1
====>> (r cos a)^2 + (r sin a)^2= r^2 (berdasarkan rumus pers O -> a^2 + b^2 = c^2)
r^2 cos^2 a + r^2 sin^2 a= r^2 (selain itu 2a=a+a)
r^2 (cos^2 a + sin^2 a)=r^2
(cos^2 a + sin^2 a)=1
sin 2x= 2 sin x cos x
====>> sin(a+a)= sin a cos a + cos a sin a sin x= 2 sin 1/2x cos 1/2x
= 2 sin a cos a
cos 2x= cos^2 x - sin^2 x cos x= cos^2 1/2x - sin^2 1/2x
= cos^2 x -(1- cos^2 X) dst'''
= 2 cos^2 x - 1
=(1- sin^2 x) - sin^2 x
= 1- 2 sin^2 x
====>>cos (a+a)= cos a cos a - sin a sin a
=cos^2 a - sin^2 a
tan 2x= sin 2x
------
cos 2x
= 2 sin x cos x
-----------------
cos^2 x - sin^2 x
= 2 sin x cos x 1
----------------- X ---------
cos^2 x - sin^2 x cos^2 x
= 2 tan x
----------
1- tan^2 x
Aturan sinus dan cosinus:
------------------------
a b c a^2= b^2.c^2 - 2bc cos A
--------=--------=------- b^2= a^2.c^2 - 2ac cos B
sin a sin b sin c c^2= a^2.b^2 - 2ab cos C
Bagaimana bisa menemukan rumus itu?
Asumsi awal; berasal dari segitiga(lihat buku latihan)
Luas segitiga menggunakan aturan trigonometry:
-----------------------------------
L= 1/2ab sin C
L= 1/2ac sin B
L= 1/2bc sin A
0 komentar:
Post a Comment